Skip to content
Home » Install Python Visual Studio | A Quick Introduction To The Visual Studio Code

Install Python Visual Studio | A Quick Introduction To The Visual Studio Code

How to Setup Python on Microsoft Visual Studio 2022 | Amit Thinks

Start VS Code in a workspace folder

By starting VS Code in a folder, that folder becomes your “workspace”.

Using a command prompt or terminal, create an empty folder called “hello”, navigate into it, and open VS Code (

code

) in that folder () by entering the following commands:


mkdir hello cd hello code .

Note: If you’re using an Anaconda distribution, be sure to use an Anaconda command prompt.

Alternately, you can create a folder through the operating system UI, then use VS Code’s File > Open Folder to open the project folder.

Enhance completions with AI

GitHub Copilot is an AI-powered code completion tool that helps you write code faster and smarter. You can use the GitHub Copilot extension in VS Code to generate code, or to learn from the code it generates.

GitHub Copilot provides suggestions for languages beyond Python and a wide variety of frameworks, including JavaScript, TypeScript, Ruby, Go, C# and C++.

You can learn more about how to get started with Copilot in the Copilot documentation.

How to Setup Python on Microsoft Visual Studio 2022 | Amit Thinks
How to Setup Python on Microsoft Visual Studio 2022 | Amit Thinks

Configure and run the debugger

Let’s now try debugging our Python program. Debugging support is provided by the Python Debugger extension, which is automatically installed with the Python extension. To ensure it has been installed correctly, open the Extensions view (⇧⌘X (Windows, Linux Ctrl+Shift+X)) and search for

@installed python debugger

. You should see the Python Debugger extension listed in the results.

Next, set a breakpoint on line 2 of

hello.py

by placing the cursor on the

Next, to initialize the debugger, press F5. Since this is your first time debugging this file, a configuration menu will open from the Command Palette allowing you to select the type of debug configuration you would like for the opened file.

Note: VS Code uses JSON files for all of its various configurations;


launch.json

is the standard name for a file containing debugging configurations.

Select Python File, which is the configuration that runs the current file shown in the editor using the currently selected Python interpreter.

The debugger will start, and then stop at the first line of the file breakpoint. The current line is indicated with a yellow arrow in the left margin. If you examine the Local variables window at this point, you can see that the

msg

variable appears in the Local pane.

A debug toolbar appears along the top with the following commands from left to right: continue (F5), step over (F10), step into (F11), step out (⇧F11 (Windows, Linux Shift+F11)), restart (⇧⌘F5 (Windows, Linux Ctrl+Shift+F5)), and stop (⇧F5 (Windows, Linux Shift+F5)).

The Status Bar also changes color (orange in many themes) to indicate that you’re in debug mode. The Python Debug Console also appears automatically in the lower right panel to show the commands being run, along with the program output.

To continue running the program, select the continue command on the debug toolbar (F5). The debugger runs the program to the end.

Tip Debugging information can also be seen by hovering over code, such as variables. In the case of


msg

, hovering over the variable will display the string

Roll a dice!

in a box above the variable.

You can also work with variables in the Debug Console (If you don’t see it, select Debug Console in the lower right area of VS Code, or select it from the … menu.) Then try entering the following lines, one by one, at the > prompt at the bottom of the console:


msg msg.capitalize() msg.split()

Select the blue Continue button on the toolbar again (or press F5) to run the program to completion. “Roll a dice!” appears in the Python Debug Console if you switch back to it, and VS Code exits debugging mode once the program is complete.

If you restart the debugger, the debugger again stops on the first breakpoint.

To stop running a program before it’s complete, use the red square stop button on the debug toolbar (⇧F5 (Windows, Linux Shift+F5)), or use the Run > Stop debugging menu command.

For full details, see Debugging configurations, which includes notes on how to use a specific Python interpreter for debugging.

Tip: Use Logpoints instead of print statements: Developers often litter source code with

Feedback

Submit and view feedback for

Getting Started with Python in VS Code

In this tutorial, you will learn how to use Python 3 in Visual Studio Code to create, run, and debug a Python “Roll a dice” application, work with virtual environments, use packages, and more! By using the Python extension, you turn VS Code into a great, lightweight Python editor.

If you are new to programming, check out the Visual Studio Code for Education – Introduction to Python course. This course offers a comprehensive introduction to Python, featuring structured modules in a ready-to-code browser-based development environment.

To gain a deeper understanding of the Python language, you can explore any of the programming tutorials listed on python.org within the context of VS Code.

For a Data Science focused tutorial with Python, check out our Data Science section.

How to set up Python on Visual Studio Code
How to set up Python on Visual Studio Code

Next steps

To learn how to build web apps with popular Python web frameworks, see the following tutorials:

There is then much more to explore with Python in Visual Studio Code:

  • Python profile template – Create a new profile with a curated set of extensions, settings, and snippets
  • Editing code – Learn about autocomplete, IntelliSense, formatting, and refactoring for Python.
  • Linting – Enable, configure, and apply a variety of Python linters.
  • Debugging – Learn to debug Python both locally and remotely.
  • Testing – Configure test environments and discover, run, and debug tests.
  • Settings reference – Explore the full range of Python-related settings in VS Code.
  • Deploy Python to Azure App Service
  • Deploy Python to Container Apps

Install Python support in Visual Studio

Python support is available only on Visual Studio for Windows. On Mac and Linux, Python support is available through Visual Studio Code.

Feedback

Submit and view feedback for

Quickstart: Create a Python project from existing code

Once you’ve installed Python support in Visual Studio, it’s easy to bring existing Python code into a Visual Studio project.

Important

The process described here does not move or copy the original source files. If you want to work with a copy, duplicate the folder first.

Follow these steps to create a project from existing files.

Important

The following process doesn’t move or copy any original source files. If you want to work with a copy of your files, first duplicate the folder and then create the project.

  1. Launch Visual Studio and select File > New > Project.

  2. In the Create a new project dialog, search for python, and select the From Existing Python code template. Enter a project name and location, choose the solution to contain the project, and select Create.

  3. In the Create New Project from Existing Python Code wizard, set the folder path to your existing code, set a filter for file types, and specify any search paths that your project requires, then select Next. If you don’t know the search paths, leave the field blank.

  4. On the next page, select the startup file for your project. Visual Studio selects the default global Python interpreter and version. You can change the environment by using the dropdown menu. When you’re ready, select Next.

    Note

    The dialog shows only files in the root folder. If the file you want is in a subfolder, leave the startup file blank. You can set the startup file later in Solution Explorer, as described in a later step.

  5. Select the location where you want to save the project file (a .pyproj file on disk). If applicable, you can also include autodetection of virtual environments and customize the project for different web frameworks. If you’re unsure of these options, leave the fields set to the defaults.

  6. Select Finish.

    Visual Studio creates the project and opens it in Solution Explorer. If you want to move the .pyproj file to a different location, select the file in Solution Explorer, and then select File > Save As on the toolbar. This action updates file references in the project, but it doesn’t move any code files.

  7. To set a different startup file, locate the file in Solution Explorer, right-click the file, and select Set as Startup File.

If desired, run the program by pressing Ctrl+F5 or selecting Debug > Start without Debugging.

How to setup Python for VSCode in 2023 in 5mins! | Install Python and Setup VSCode for Windows 10
How to setup Python for VSCode in 2023 in 5mins! | Install Python and Setup VSCode for Windows 10

Configuring Linting and Formatting in VSCode

Linting

Linting highlights the problems in the Python source code and provides us with suggestions. It generally highlights syntactical and stylistic issues. Linting helps you identify and correct coding issues that can lead to errors.

You can select the linting method by selecting Python: Select Linter command in the command palette (Ctrl+Shift+P). You can also manually enable the linting method in settings.

Select linting method

In our case, we have selected the flake8 method. You can also review the list of available linting methods.

  • Enable/ Disable Linting: select Python: Enable/Disable Linting in command palette.
  • Run Linting: command palette (Ctrl+Shift+P) > Python: Run Linting.

Fixing the error

After running the Python linter, you will see the issues with the suggestions.

Note: Enabling a different linter will prompt you to install the required Python package.

Formatting

Formatting makes code readable. It follows specific rules for line spacing, indents, spacing around operators, and closing brackets. The Python extension supports three Python formatting methods: autopep8, black, or yapf.

By reading about PEP-8: Python Naming Conventions & Code Standards, you can learn Python’s style guide and formatting rules.

Select the Python formatter

To access the formatting option, we have to open the settings panel by going to Preferences -> Settings or using the keyboard shortcut: Ctrl +,. After that, type “python formatting provider” in the search bar and select “black” from the dropdown menu.

Configure Python formatter

For formatting the Python file on save, we have to search for format on save in the Settings and enable the Editor: Format on Save option.

Configure and run the debugger

Let’s now try debugging our Python program. Debugging support is provided by the Python Debugger extension, which is automatically installed with the Python extension. To ensure it has been installed correctly, open the Extensions view (⇧⌘X (Windows, Linux Ctrl+Shift+X)) and search for

@installed python debugger

. You should see the Python Debugger extension listed in the results.

Next, set a breakpoint on line 2 of

hello.py

by placing the cursor on the

Next, to initialize the debugger, press F5. Since this is your first time debugging this file, a configuration menu will open from the Command Palette allowing you to select the type of debug configuration you would like for the opened file.

Note: VS Code uses JSON files for all of its various configurations;


launch.json

is the standard name for a file containing debugging configurations.

Select Python File, which is the configuration that runs the current file shown in the editor using the currently selected Python interpreter.

The debugger will start, and then stop at the first line of the file breakpoint. The current line is indicated with a yellow arrow in the left margin. If you examine the Local variables window at this point, you can see that the

msg

variable appears in the Local pane.

A debug toolbar appears along the top with the following commands from left to right: continue (F5), step over (F10), step into (F11), step out (⇧F11 (Windows, Linux Shift+F11)), restart (⇧⌘F5 (Windows, Linux Ctrl+Shift+F5)), and stop (⇧F5 (Windows, Linux Shift+F5)).

The Status Bar also changes color (orange in many themes) to indicate that you’re in debug mode. The Python Debug Console also appears automatically in the lower right panel to show the commands being run, along with the program output.

To continue running the program, select the continue command on the debug toolbar (F5). The debugger runs the program to the end.

Tip Debugging information can also be seen by hovering over code, such as variables. In the case of


msg

, hovering over the variable will display the string

Roll a dice!

in a box above the variable.

You can also work with variables in the Debug Console (If you don’t see it, select Debug Console in the lower right area of VS Code, or select it from the … menu.) Then try entering the following lines, one by one, at the > prompt at the bottom of the console:


msg msg.capitalize() msg.split()

Select the blue Continue button on the toolbar again (or press F5) to run the program to completion. “Roll a dice!” appears in the Python Debug Console if you switch back to it, and VS Code exits debugging mode once the program is complete.

If you restart the debugger, the debugger again stops on the first breakpoint.

To stop running a program before it’s complete, use the red square stop button on the debug toolbar (⇧F5 (Windows, Linux Shift+F5)), or use the Run > Stop debugging menu command.

For full details, see Debugging configurations, which includes notes on how to use a specific Python interpreter for debugging.

Tip: Use Logpoints instead of print statements: Developers often litter source code with

Python and Visual Studio Code Installation
Python and Visual Studio Code Installation

Run Python code

Click the Run Python File in Terminal play button in the top-right side of the editor.

The button opens a terminal panel in which your Python interpreter is automatically activated, then runs

python3 hello.py

(macOS/Linux) or

python hello.py

(Windows):

There are three other ways you can run Python code within VS Code:

  1. Right-click anywhere in the editor window and select Run > Python File in Terminal (which saves the file automatically):

  2. Select one or more lines, then press Shift+Enter or right-click and select Run Selection/Line in Python Terminal. This command is convenient for testing just a part of a file.

  3. From the Command Palette (⇧⌘P (Windows, Linux Ctrl+Shift+P)), select the Python: Start REPL command to open a REPL terminal for the currently selected Python interpreter. In the REPL, you can then enter and run lines of code one at a time.

Congrats, you just ran your first Python code in Visual Studio Code!

Download and install the Python workload

Complete the following steps to download and install the Python workload.

  1. Download and run the latest Visual Studio Installer for Windows. Python support is present in release 15.2 and later. If you have Visual Studio installed already, open Visual Studio and run the installer by selecting Tools > Get Tools and Features.

    Tip

    The Community edition is for individual developers, classroom learning, academic research, and open source development. For other uses, install Visual Studio Professional or Visual Studio Enterprise.

  2. The installer provides a list of workloads that are groups of related options for specific development areas. For Python, select the Python development workload and select Install:

    Python installation options Description Python distributions Choose any combination of Python distribution that you plan to work with. Common options include 32-bit and 64-bit variants of Python 2, Python 3, Miniconda, Anaconda 2, and Anaconda 3. Each option includes the distribution’s interpreter, runtime, and libraries. Anaconda, specifically, is an open data science platform that includes a wide range of preinstalled packages. Visual Studio automatically detects existing Python installations. For more information, see The Python Environments window. Also, if a newer version of Python is available than the version shown in the installer, you can install the new version separately and Visual Studio detects it. Cookiecutter template support Install the Cookiecutter graphical UI to discover templates, input template options, and create projects and files. For more information, see Use the Cookiecutter extension. Python web support Install tools for web development including HTML, CSS, and JavaScript editing support, along with templates for projects using the Bottle, Flask, and Django frameworks. For more information, see Python web project templates. Python native development tools Install the C++ compiler and other necessary components to develop native extensions for Python. For more information, see Create a C++ extension for Python. Also install the Desktop development with C++ workload for full C++ support.

    By default, the Python workload installs for all users on a computer under:

    %ProgramFiles%\Microsoft Visual Studio\

    \

    Common7\IDE\Extensions\Microsoft\Python

    where

    is 2022 and

    is Community, Professional, or Enterprise.

    %ProgramFiles(x86)%\Microsoft Visual Studio\

    \

    Common7\IDE\Extensions\Microsoft\Python

    where

    is 2019 or 2017 and

    is Community, Professional, or Enterprise.

Visual Studio 2022 (Python Getting Started)
Visual Studio 2022 (Python Getting Started)

Start VS Code in a workspace folder

By starting VS Code in a folder, that folder becomes your “workspace”.

Using a command prompt or terminal, create an empty folder called “hello”, navigate into it, and open VS Code (

code

) in that folder () by entering the following commands:


mkdir hello cd hello code .

Note: If you’re using an Anaconda distribution, be sure to use an Anaconda command prompt.

Alternately, you can create a folder through the operating system UI, then use VS Code’s File > Open Folder to open the project folder.

Visual Studio Code Python for Data Science

Visual Studio Code allows users to simply run the data science code in Jupyter Notebook. We can run the cell and visualize the result within VSCode. It supports all kinds of programming languages and comes with built-in features to mimic the browser-based Jupyter notebook that we all love.

Learn more about Jupyter Notebooks by reading our How to use Jupyter Notebook tutorial.

To use the Jupyter notebook extension, we need to first install a Jupyter notebook.


pip install jupyterlab

Or


pip install notebook

Note: Jupyter Notebook and Jupyter Lab come with Anaconda Distribution, so we don’t have to install anything.

Install Jupyter Extension

After that, install the Jupyter extension from the Visual Studio marketplace.

To create a Jupyter notebook file, we can either create a new file with .ipynb extension or access the command palette (Ctrl+Shift+P) and select Jupyter: Create New Jupyter Notebook.

Pick the Ipython Kernel

To initialize the Jupyter server, we need to select the kernel by clicking on the kernel picker in the top right of the notebook, as shown in the image.

Note: By default, Anaconda comes with Python version 3.9.13. You can download the latest version of Python 3.11, but it won’t support all packages.

Run the Jupyter cell

Write a print expression to display “Hello World” and press the run button.

Add another cell

You can use the B key or click on + Code to add a new cell and run the cell with Ctrl + ⤶ Enter. You can learn about Jupyter keyboard shortcuts on defkey.

For R language users, we have got a Notebooks for R tutorial. You will learn to use R in a Jupyter Notebook and useful features.

Note: if you are looking for a hassle-free way of using Jupyter Notebook, then try DataCamp Workspace. It comes with essential Python libraries, a pre-build environment, and it supports various database integration.

How to Setup Python in Visual Studio Code on Windows 11
How to Setup Python in Visual Studio Code on Windows 11

Install and use packages

Let’s build upon the previous example by using packages.

In Python, packages are how you obtain any number of useful code libraries, typically from PyPI, that provide additional functionality to your program. For this example, you use the

numpy

package to generate a random number.

Return to the Explorer view (the top-most icon on the left side, which shows files), open

hello.py

, and paste in the following source code:


import numpy as np msg = "Roll a dice" print(msg) print(np.random.randint(1,9))

Tip: If you enter the above code by hand, you may find that auto-completions change the names after the


as

keywords when you press Enter at the end of a line. To avoid this, type a space, then Enter.

Next, run the file in the debugger using the “Python: Current file” configuration as described in the last section.

You should see the message, “ModuleNotFoundError: No module named ‘numpy'”. This message indicates that the required package isn’t available in your interpreter. If you’re using an Anaconda distribution or have previously installed the

numpy

package you may not see this message.

To install the

numpy

package, stop the debugger and use the Command Palette to run Terminal: Create New Terminal (⌃⇧` (Windows, Linux Ctrl+Shift+`)). This command opens a command prompt for your selected interpreter.

To install the required packages in your virtual environment, enter the following commands as appropriate for your operating system:

  1. Install the packages


    # Don't use with Anaconda distributions because they include matplotlib already. # macOS python3 -m pip install numpy # Windows (may require elevation) py -m pip install numpy # Linux (Debian) apt-get install python3-tk python3 -m pip install numpy

  2. Now, rerun the program, with or without the debugger, to view the output!

Congrats on completing the Python tutorial! During the course of this tutorial, you learned how to create a Python project, create a virtual environment, run and debug your Python code, and install Python packages. Explore additional resources to learn how to get the most out of Python in Visual Studio Code!

Debugging

No more

For more specific information on debugging in Python, such as configuring your

launch.json

settings and implementing remote debugging, see Debugging. General VS Code debugging information is found in the debugging document.

Additionally, the Django and Flask tutorials provide examples of how to implement debugging in the context of web applications, including debugging Django templates.

Python Full Course for Beginners | Complete All-in-One Tutorial | 9 Hours
Python Full Course for Beginners | Complete All-in-One Tutorial | 9 Hours

Feedback

Submit and view feedback for

Getting Started with Python in VS Code

In this tutorial, you will learn how to use Python 3 in Visual Studio Code to create, run, and debug a Python “Roll a dice” application, work with virtual environments, use packages, and more! By using the Python extension, you turn VS Code into a great, lightweight Python editor.

If you are new to programming, check out the Visual Studio Code for Education – Introduction to Python course. This course offers a comprehensive introduction to Python, featuring structured modules in a ready-to-code browser-based development environment.

To gain a deeper understanding of the Python language, you can explore any of the programming tutorials listed on python.org within the context of VS Code.

For a Data Science focused tutorial with Python, check out our Data Science section.

Other popular Python extensions

The Microsoft Python extension provides all of the features described previously in this article. Additional Python language support can be added to VS Code by installing other popular Python extensions.

  1. Open the Extensions view (⇧⌘X (Windows, Linux Ctrl+Shift+X)).
  2. Filter the extension list by typing ‘python’.

The extensions shown above are dynamically queried. Click on an extension tile above to read the description and reviews to decide which extension is best for you. See more in the Marketplace.

[Vật Lý 12] LIVESTREAM KHAI BÚT ĐẦU XUÂN | Thầy VNA
[Vật Lý 12] LIVESTREAM KHAI BÚT ĐẦU XUÂN | Thầy VNA

Next steps

  • Python Hello World tutorial – Get started with Python in VS Code.
  • Editing Python – Learn about auto-completion, formatting, and refactoring for Python.
  • Basic Editing – Learn about the powerful VS Code editor.
  • Code Navigation – Move quickly through your source code.
  • Django tutorial
  • Flask tutorial

A quick introduction to the Visual Studio Code

Visual Studio Code is a lightweight source code editor. The Visual Studio Code is often called VS Code. The VS Code runs on your desktop. It’s available for Windows, macOS, and Linux.

VS Code comes with many features such as IntelliSense, code editing, and extensions that allow you to edit Python source code effectively. The best part is that the VS Code is open-source and free.

Besides the desktop version, VS Code also has a browser version that you can use directly in your web browser without installing it.

This tutorial teaches you how to set up Visual Studio Code for a Python environment so that you can edit, run, and debug Python code.

How to install Visual Studio Code on Windows 10/11 [ 2024 Update ] Complete Guide
How to install Visual Studio Code on Windows 10/11 [ 2024 Update ] Complete Guide

View environments

  1. Select the View > Other Windows > Python Environments menu command. The Python Environments window opens as a peer to Solution Explorer and shows the different environments available to you. The list shows both environments that you installed using the Visual Studio installer and environments you installed separately. That includes global, virtual, and conda environments. The environment in bold is the default environment that’s used for new projects. For more information about working with environments, see How to create and manage Python environments in Visual Studio environments.

    Note

    You can also use the Ctrl+K, Ctrl+` keyboard shortcut to open the Python Environments window from the Solution Explorer window. If the shortcut doesn’t work and you can’t find the Python Environments window in the menu, it’s possible that you haven’t installed the Python workload. See How to install Python support in Visual Studio on Windows for guidance about how to install Python.

    With a Python project open, you can open the Python Environments window from Solution Explorer. Right-click Python Environments and select View All Python Environments.

  2. Now, create a new project with File > New > Project, selecting the Python Application template.

  3. In the code file that appears, paste the following code, which creates a cosine wave like the previous tutorial steps, only this time plotted graphically. You can also use the project you previously created and replace the code.


    from math import radians import numpy as np # installed with matplotlib import matplotlib.pyplot as plt def main(): x = np.arange(0, radians(1800), radians(12)) plt.plot(x, np.cos(x), 'b') plt.show() main()

  4. In the editor window, hover over the


    numpy

    and

    matplotlib

    import statements. You’ll notice that they aren’t resolved. To resolve the import statements, install the packages to the default global environment.

  5. When you look at the editor window, notice that when you hover over the


    numpy

    and

    matplotlib

    import statements that they aren’t resolved. The reason is the packages haven’t been installed to the default global environment.

    For example, select Open interactive window and an Interactive window for that specific environment appears in Visual Studio.

  6. Use the drop-down list below the list of environments to switch to the Packages tab.The Packages tab lists all packages that are currently installed in the environment.

Autocomplete and IntelliSense

The Python extension supports code completion and IntelliSense using the currently selected interpreter. IntelliSense is a general term for a number of features, including intelligent code completion (in-context method and variable suggestions) across all your files and for built-in and third-party modules.

IntelliSense quickly shows methods, class members, and documentation as you type. You can also trigger completions at any time with ⌃Space (Windows, Linux Ctrl+Space). Hovering over identifiers will show more information about them.

How to install Python 3.12.0 on Windows 11
How to install Python 3.12.0 on Windows 11

Download and install the Python workload

Complete the following steps to download and install the Python workload.

  1. Download and run the latest Visual Studio Installer for Windows. Python support is present in release 15.2 and later. If you have Visual Studio installed already, open Visual Studio and run the installer by selecting Tools > Get Tools and Features.

    Tip

    The Community edition is for individual developers, classroom learning, academic research, and open source development. For other uses, install Visual Studio Professional or Visual Studio Enterprise.

  2. The installer provides a list of workloads that are groups of related options for specific development areas. For Python, select the Python development workload and select Install:

    Python installation options Description Python distributions Choose any combination of Python distribution that you plan to work with. Common options include 32-bit and 64-bit variants of Python 2, Python 3, Miniconda, Anaconda 2, and Anaconda 3. Each option includes the distribution’s interpreter, runtime, and libraries. Anaconda, specifically, is an open data science platform that includes a wide range of preinstalled packages. Visual Studio automatically detects existing Python installations. For more information, see The Python Environments window. Also, if a newer version of Python is available than the version shown in the installer, you can install the new version separately and Visual Studio detects it. Cookiecutter template support Install the Cookiecutter graphical UI to discover templates, input template options, and create projects and files. For more information, see Use the Cookiecutter extension. Python web support Install tools for web development including HTML, CSS, and JavaScript editing support, along with templates for projects using the Bottle, Flask, and Django frameworks. For more information, see Python web project templates. Python native development tools Install the C++ compiler and other necessary components to develop native extensions for Python. For more information, see Create a C++ extension for Python. Also install the Desktop development with C++ workload for full C++ support.

    By default, the Python workload installs for all users on a computer under:

    %ProgramFiles%\Microsoft Visual Studio\

    \

    Common7\IDE\Extensions\Microsoft\Python

    where

    is 2022 and

    is Community, Professional, or Enterprise.

    %ProgramFiles(x86)%\Microsoft Visual Studio\

    \

    Common7\IDE\Extensions\Microsoft\Python

    where

    is 2019 or 2017 and

    is Community, Professional, or Enterprise.

Conclusion

VSCode is not just a code editor. It is a complete ecosystem for efficient Python development. It provides us with shortcuts, Commands Palette, IntelliSense, linting, formatting, debugging, formatting, Git integrations, Jupyter notebook, third-party extensions, and a fully customizable development experience.

VSCode is highly recommended to beginners who are learning the basics of Python and data science. Complete Data Scientist with a Python career track to become a master in Python and data science. The career track consists of 25 courses and six projects to prepare you to become a professional data scientist.

A Deep Dive into the Phi-2 Model

Python List Size: 8 Different Methods for Finding the Length of a List in Python

An End-to-End ML Model Monitoring Workflow with NannyML in Python

Bex Tuychiev

15 min

Step 5: Install packages in your Python environment

Previous step: Run code in the debugger

The Python developer community has produced thousands of useful packages that you can incorporate into your own projects. Visual Studio provides a UI to manage packages in your Python environments.

How to Install and Run Python and Visual Studio Code (2023)
How to Install and Run Python and Visual Studio Code (2023)

Install packages using the Python Environments window

  1. From the Python Environments window, select the default environment for new Python projects and choose the Packages tab. You’ll then see a list of packages that are currently installed in the environment.

  2. Install


    matplotlib

    by entering its name into the search field and then selecting the Run command: pip install matplotlib option. Running the command will install

    matplotlib

    , and any packages it depends on (in this case that includes

    numpy

    ).

  3. Choose the Packages tab.

  4. Consent to elevation if prompted to do so.

  5. After the package is installed, it appears in the Python Environments window. The X to the right of the package uninstalls it.

  6. Consent to elevation if prompted to do so.

  7. After the package installs, it appears in the Python Environments window. The X to the right of the package uninstalls it.

    Note

    A small progress bar might appear underneath the environment to indicate that Visual Studio is building its IntelliSense database for the newly-installed package. The IntelliSense tab also shows more detailed information. Be aware that until that database is complete, IntelliSense features like auto-completion and syntax checking won’t be active in the editor for that package.

    Visual Studio 2017 version 15.6 and later uses a different and faster method for working with IntelliSense, and displays a message to that effect on the IntelliSense tab.

Python profile template

Profiles let you quickly switch your extensions, settings, and UI layout depending on your current project or task. To help you get started with Python development, you can use the Python profile template, which is a curated profile with useful extensions, settings, and snippets. You can use the profile template as is or use it as a starting point to customize further for you own workflows.

You select a profile template through the Profiles > Create Profile… dropdown:

Once you select a profile template, you can review the settings and extensions, and remove individual items if you don’t want to include them in your new Profile. After creating the new profile based on the template, changes made to settings, extensions, or UI are persisted in your profile.

How to Add Python Interpreter in Visual Studio Code - Step By Step
How to Add Python Interpreter in Visual Studio Code – Step By Step

Create a Python source code file

From the File Explorer toolbar, select the New File button on the

hello

folder:

Name the file

hello.py

, and VS Code will automatically open it in the editor:

By using the

.py

file extension, you tell VS Code to interpret this file as a Python program, so that it evaluates the contents with the Python extension and the selected interpreter.

Note: The File Explorer toolbar also allows you to create folders within your workspace to better organize your code. You can use the New folder button to quickly create a folder.

Now that you have a code file in your Workspace, enter the following source code in

hello.py

:


msg = "Roll a dice" print(msg)

When you start typing

IntelliSense and auto-completions work for standard Python modules as well as other packages you’ve installed into the environment of the selected Python interpreter. It also provides completions for methods available on object types. For example, because the

msg

variable contains a string, IntelliSense provides string methods when you type

msg.

:

Finally, save the file (⌘S (Windows, Linux Ctrl+S)). At this point, you’re ready to run your first Python file in VS Code.

For full details on editing, formatting, and refactoring, see Editing code. The Python extension also has full support for Linting.

Phản hồi

Gửi và xem ý kiến phản hồi dành cho

Tutorial: Work with Python in Visual Studio

In this tutorial, you learn how to work with Python in Visual Studio. Python is a popular programming language that’s reliable, flexible, easy to learn, and free to use on all operating systems. Python is supported by a strong developer community and many free libraries. The language supports all kinds of development, including web applications, web services, desktop apps, scripting, and scientific computing. Many universities, scientists, casual developers, and professional developers use Python. Visual Studio provides first-class language support for Python.

This tutorial guides you through a six-step process:

  • Step 1: Create a Python project (this article)
  • Step 2: Write and run code to see Visual Studio IntelliSense at work
  • Step 3: Create more code in the Interactive REPL window
  • Step 4: Run the completed program in the Visual Studio debugger
  • Step 5: Install packages and manage Python environments
  • Step 6: Work with Git

This article covers the tasks in Step 1. You create a new project and review the UI elements visible in Solution Explorer.

My Python Development Environment Setup - Full Tutorial
My Python Development Environment Setup – Full Tutorial

Create a Python source code file

From the File Explorer toolbar, select the New File button on the

hello

folder:

Name the file

hello.py

, and VS Code will automatically open it in the editor:

By using the

.py

file extension, you tell VS Code to interpret this file as a Python program, so that it evaluates the contents with the Python extension and the selected interpreter.

Note: The File Explorer toolbar also allows you to create folders within your workspace to better organize your code. You can use the New folder button to quickly create a folder.

Now that you have a code file in your Workspace, enter the following source code in

hello.py

:


msg = "Roll a dice" print(msg)

When you start typing

IntelliSense and auto-completions work for standard Python modules as well as other packages you’ve installed into the environment of the selected Python interpreter. It also provides completions for methods available on object types. For example, because the

msg

variable contains a string, IntelliSense provides string methods when you type

msg.

:

Finally, save the file (⌘S (Windows, Linux Ctrl+S)). At this point, you’re ready to run your first Python file in VS Code.

For full details on editing, formatting, and refactoring, see Editing code. The Python extension also has full support for Linting.

Testing

The Python extension supports testing with Python’s built-in unittest framework and pytest.

In order to run tests, you must enable one of the supported testing frameworks in the settings of your project. Each framework has its own specific settings, such as arguments for identifying the paths and patterns for test discovery.

Once the tests have been discovered, VS Code provides a variety of commands (on the Status Bar, the Command Palette, and elsewhere) to run and debug tests. These commands also allow you to run individual test files and methods

It's So Easy!! Install and Setup Python in Visual Studio Code
It’s So Easy!! Install and Setup Python in Visual Studio Code

Install a Python interpreter

Along with the Python extension, you need to install a Python interpreter. Which interpreter you use is dependent on your specific needs, but some guidance is provided below.

Windows

Install Python from python.org. Use the Download Python button that appears first on the page to download the latest version.

Note: If you don’t have admin access, an additional option for installing Python on Windows is to use the Microsoft Store. The Microsoft Store provides installs of supported Python versions.

For additional information about using Python on Windows, see Using Python on Windows at Python.org

macOS

The system install of Python on macOS is not supported. Instead, a package management system like Homebrew is recommended. To install Python using Homebrew on macOS use

brew install python3

at the Terminal prompt.

Note: On macOS, make sure the location of your VS Code installation is included in your PATH environment variable. See these setup instructions for more information.

Linux

The built-in Python 3 installation on Linux works well, but to install other Python packages you must install

pip

with get-pip.py.

Other options

  • Data Science: If your primary purpose for using Python is Data Science, then you might consider a download from Anaconda. Anaconda provides not just a Python interpreter, but many useful libraries and tools for data science.

  • Windows Subsystem for Linux: If you are working on Windows and want a Linux environment for working with Python, the Windows Subsystem for Linux (WSL) is an option for you. If you choose this option, you’ll also want to install the WSL extension. For more information about using WSL with VS Code, see VS Code Remote Development or try the Working in WSL tutorial, which will walk you through setting up WSL, installing Python, and creating a Hello World application running in WSL.

Note: To verify that you’ve installed Python successfully on your machine, run one of the following commands (depending on your operating system):

Linux/macOS: open a Terminal Window and type the following command:


python3 --version

Windows: open a command prompt and run the following command:


py -3 --version

If the installation was successful, the output window should show the version of Python that you installed. Alternatively, you can use the


py -0

command in the VS Code integrated terminal to view the versions of python installed on your machine. The default interpreter is identified by an asterisk (*).

Git Integration

VSCode comes with built-in Git integration. No more writing Git commands on terminals. Git integration provides a user-friendly GUI and helpful functions for diff, views, staging, branching, committing, merge, and more.

Check out our Git Cheat Sheet to learn about the various Git commands and functionalities.

Note: To enable Git integration, you need to install Git from official site.

Initializing Git

We can access it through the action bar or by using the keyboard shortcut: Ctrl + Shift + G. Before we start committing, we need to initialize the repository.

Git Commit

After that, add and commit the changes with the message. It is that simple.

Create a GitHub repository and push the code

You can even create a GitHub repository and push your code to a remote server by logging into your GitHub account.

Private GitHub repository

We have created a GitHub private repository of Python files and folders.

You can now simply commit and push the changes to the remote server without leaving the VSCode.

Follow our Github and Git tutorial to learn everything about Git and GitHub.

How to create Virtual Environment for Python in Visual Studio Code (2023)
How to create Virtual Environment for Python in Visual Studio Code (2023)

Next steps

To learn how to build web apps with popular Python web frameworks, see the following tutorials:

There is then much more to explore with Python in Visual Studio Code:

  • Python profile template – Create a new profile with a curated set of extensions, settings, and snippets
  • Editing code – Learn about autocomplete, IntelliSense, formatting, and refactoring for Python.
  • Linting – Enable, configure, and apply a variety of Python linters.
  • Debugging – Learn to debug Python both locally and remotely.
  • Testing – Configure test environments and discover, run, and debug tests.
  • Settings reference – Explore the full range of Python-related settings in VS Code.
  • Deploy Python to Azure App Service
  • Deploy Python to Container Apps

Python in Visual Studio Code

Working with Python in Visual Studio Code, using the Microsoft Python extension, is simple, fun, and productive. The extension makes VS Code an excellent Python editor, and works on any operating system with a variety of Python interpreters. It leverages all of VS Code’s power to provide auto complete and IntelliSense, linting, debugging, and unit testing, along with the ability to easily switch between Python environments, including virtual and conda environments.

This article provides only an overview of the different capabilities of the Python extension for VS Code. For a walkthrough of editing, running, and debugging code, use the button below.

Create a virtual environment

A best practice among Python developers is to use a project-specific

virtual environment

. Once you activate that environment, any packages you then install are isolated from other environments, including the global interpreter environment, reducing many complications that can arise from conflicting package versions. You can create non-global environments in VS Code using Venv or Anaconda with Python: Create Environment.

Open the Command Palette (⇧⌘P (Windows, Linux Ctrl+Shift+P)), start typing the Python: Create Environment command to search, and then select the command.

The command presents a list of environment types, Venv or Conda. For this example, select Venv.

The command then presents a list of interpreters that can be used for your project. Select the interpreter you installed at the beginning of the tutorial.

After selecting the interpreter, a notification will show the progress of the environment creation and the environment folder (

/.venv

) will appear in your workspace.

Ensure your new environment is selected by using the Python: Select Interpreter command from the Command Palette.

Note: For additional information about virtual environments, or if you run into an error in the environment creation process, see Environments.

Python Tutorial for Beginners with VS Code 🐍
Python Tutorial for Beginners with VS Code 🐍

Review elements in Solution Explorer

Take some time to familiarize yourself with Solution Explorer, where you can browse files and folders in your project.

  • (1) At the top level is the solution, which by default has the same name as your project. A solution, which is shown as an .sln file on disk, is a container for one or more related projects. For example, if you write a C++ extension for your Python application, that C++ project can be in the same solution. The solution might also contain a project for a web service, and projects for dedicated test programs.

  • (2) Your project is highlighted in bold and uses the name you entered in the Create a new project dialog. On disk, this project is represented by a .pyproj file in your project folder.

  • (3) Under your project you see source files. In this example, you have only a single .py file. Selecting a file displays its properties in the Properties window. If you don’t see the Properties window, select the wrench icon in the Solution Explorer banner. Double-clicking a file opens it in whatever way is appropriate for that file.

  • (4) Also under the project is the Python Environments node. Expand the node to show the available Python interpreters.

  • (5) Expand an interpreter node to see the libraries installed in that environment.

Right-click any node or item in Solution Explorer to show a context menu of applicable commands. For example, Rename lets you change the name of a node or item, including the project and the solution.

Install a Python interpreter

Along with the Python extension, you need to install a Python interpreter. Which interpreter you use is dependent on your specific needs, but some guidance is provided below.

Windows

Install Python from python.org. Use the Download Python button that appears first on the page to download the latest version.

Note: If you don’t have admin access, an additional option for installing Python on Windows is to use the Microsoft Store. The Microsoft Store provides installs of supported Python versions.

For additional information about using Python on Windows, see Using Python on Windows at Python.org

macOS

The system install of Python on macOS is not supported. Instead, a package management system like Homebrew is recommended. To install Python using Homebrew on macOS use

brew install python3

at the Terminal prompt.

Note: On macOS, make sure the location of your VS Code installation is included in your PATH environment variable. See these setup instructions for more information.

Linux

The built-in Python 3 installation on Linux works well, but to install other Python packages you must install

pip

with get-pip.py.

Other options

  • Data Science: If your primary purpose for using Python is Data Science, then you might consider a download from Anaconda. Anaconda provides not just a Python interpreter, but many useful libraries and tools for data science.

  • Windows Subsystem for Linux: If you are working on Windows and want a Linux environment for working with Python, the Windows Subsystem for Linux (WSL) is an option for you. If you choose this option, you’ll also want to install the WSL extension. For more information about using WSL with VS Code, see VS Code Remote Development or try the Working in WSL tutorial, which will walk you through setting up WSL, installing Python, and creating a Hello World application running in WSL.

Note: To verify that you’ve installed Python successfully on your machine, run one of the following commands (depending on your operating system):

Linux/macOS: open a Terminal Window and type the following command:


python3 --version

Windows: open a command prompt and run the following command:


py -3 --version

If the installation was successful, the output window should show the version of Python that you installed. Alternatively, you can use the


py -0

command in the VS Code integrated terminal to view the versions of python installed on your machine. The default interpreter is identified by an asterisk (*).

How to Run Python in Visual Studio Code on Windows 10 [2022] | Run Sample Python Program
How to Run Python in Visual Studio Code on Windows 10 [2022] | Run Sample Python Program

Prerequisites

  • Ability to install programs locally.
  • Basic familiarity with programming concepts.
  • Introduction min
  • Install Python 3 min
  • Knowledge check min
  • Summary min

Summary: in this tutorial, you’ll learn how to set up Visual Studio Code for Python development.

Test your install

Quickly check your installation of Python support:

  1. Launch Visual Studio.

  2. Select Alt + I to open the Python Interactive window.

  3. In the window, enter the statement


    2+2

    .

    The statement output

    displays in the window. If you don’t see the correct output, recheck your steps.

How to setup Python for VSCode in 3 mins only!! I Install Python and Setup VSCode for Windows 10!
How to setup Python for VSCode in 3 mins only!! I Install Python and Setup VSCode for Windows 10!

Install and use packages

Let’s build upon the previous example by using packages.

In Python, packages are how you obtain any number of useful code libraries, typically from PyPI, that provide additional functionality to your program. For this example, you use the

numpy

package to generate a random number.

Return to the Explorer view (the top-most icon on the left side, which shows files), open

hello.py

, and paste in the following source code:


import numpy as np msg = "Roll a dice" print(msg) print(np.random.randint(1,9))

Tip: If you enter the above code by hand, you may find that auto-completions change the names after the


as

keywords when you press Enter at the end of a line. To avoid this, type a space, then Enter.

Next, run the file in the debugger using the “Python: Current file” configuration as described in the last section.

You should see the message, “ModuleNotFoundError: No module named ‘numpy'”. This message indicates that the required package isn’t available in your interpreter. If you’re using an Anaconda distribution or have previously installed the

numpy

package you may not see this message.

To install the

numpy

package, stop the debugger and use the Command Palette to run Terminal: Create New Terminal (⌃⇧` (Windows, Linux Ctrl+Shift+`)). This command opens a command prompt for your selected interpreter.

To install the required packages in your virtual environment, enter the following commands as appropriate for your operating system:

  1. Install the packages


    # Don't use with Anaconda distributions because they include matplotlib already. # macOS python3 -m pip install numpy # Windows (may require elevation) py -m pip install numpy # Linux (Debian) apt-get install python3-tk python3 -m pip install numpy

  2. Now, rerun the program, with or without the debugger, to view the output!

Congrats on completing the Python tutorial! During the course of this tutorial, you learned how to create a Python project, create a virtual environment, run and debug your Python code, and install Python packages. Explore additional resources to learn how to get the most out of Python in Visual Studio Code!

Create a virtual environment

A best practice among Python developers is to use a project-specific

virtual environment

. Once you activate that environment, any packages you then install are isolated from other environments, including the global interpreter environment, reducing many complications that can arise from conflicting package versions. You can create non-global environments in VS Code using Venv or Anaconda with Python: Create Environment.

Open the Command Palette (⇧⌘P (Windows, Linux Ctrl+Shift+P)), start typing the Python: Create Environment command to search, and then select the command.

The command presents a list of environment types, Venv or Conda. For this example, select Venv.

The command then presents a list of interpreters that can be used for your project. Select the interpreter you installed at the beginning of the tutorial.

After selecting the interpreter, a notification will show the progress of the environment creation and the environment folder (

/.venv

) will appear in your workspace.

Ensure your new environment is selected by using the Python: Select Interpreter command from the Command Palette.

Note: For additional information about virtual environments, or if you run into an error in the environment creation process, see Environments.

Creating Web App With Python Streamlit - Lesson 1
Creating Web App With Python Streamlit – Lesson 1

Step 1: Create a new Python project

A project is how Visual Studio manages all the files that come together to produce a single application. Application files include source code, resources, and configurations. A project formalizes and maintains the relationships among all the project’s files. The project also manages external resources that are shared between multiple projects. A project allows your application to effortlessly expand and grow. Using projects is easier than managing relationships by hand in unplanned folders, scripts, text files, and your memory.

This tutorial begins with a simple project containing a single, empty code file.

  1. In Visual Studio, select File > New > Project to open the New Project dialog. You can also use the keyboard shortcut Ctrl+Shift+N. In the dialog, you can browse templates across different languages, select a template for your project, and specify where Visual Studio places files.

  2. To view Python templates, select Installed > Python on the left menu, or search for “Python.” The search option is a great way to find a template when you can’t remember its location in the languages tree.

    Python support in Visual Studio includes several project templates, including web applications using the Bottle, Flask, and Django frameworks. For the purposes of this walkthrough, however, let’s start with an empty project.

  3. Select the Python Application template, specify a name for the project, and select OK.

  1. In Visual Studio, select File > New > Project or use the keyboard shortcut Ctrl+Shift+N. The Create a new project screen opens, where you can search and browse templates across different languages.

  2. To view Python templates, search for python. Search is a great way to find a template when you can’t remember its location in the languages tree.

    Python web support in Visual Studio includes several project templates, such as web applications in the Bottle, Flask, and Django frameworks. When you install Python with the Visual Studio Installer, select Python Web Support under Optional to install these templates. For this tutorial, start with an empty project.

  3. Select the Python Application template, and select Next.

  4. On the Configure your new project screen, specify a name and file location for the project, and then select Create.

After a few moments, your new project opens in Visual Studio:

Here’s what you see:

  • (1) The Visual Studio Solution Explorer window shows the project structure.
  • (2) The default code file opens in the editor.
  • (3) The Properties window shows more information for the item selected in Solution Explorer, including its exact location on disk.

Environments

The Python extension automatically detects Python interpreters that are installed in standard locations. It also detects conda environments as well as virtual environments in the workspace folder. See Configuring Python environments.

The current environment is shown on the right side of the VS Code Status Bar:

The Status Bar also indicates if no interpreter is selected:

The selected environment is used for IntelliSense, auto-completions, linting, formatting, and any other language-related feature. It is also activated when you run or debug Python in a terminal, or when you create a new terminal with the Terminal: Create New Terminal command.

To change the current interpreter, which includes switching to conda or virtual environments, select the interpreter name on the Status Bar or use the Python: Select Interpreter command.

VS Code prompts you with a list of detected environments as well as any you’ve added manually to your user settings (see Configuring Python environments).

HƯỚNG DẪN CÀI ĐẶT PYTHON & VISUAL STUDIO CODE CHI TIẾT!
HƯỚNG DẪN CÀI ĐẶT PYTHON & VISUAL STUDIO CODE CHI TIẾT!

Jupyter notebooks

To enable Python support for Jupyter notebook files (

.ipynb

) in VS Code, you can install the Jupyter extension. The Python and Jupyter extensions work together to give you a great Notebook experience in VS Code, providing you the ability to directly view and modify code cells with IntelliSense support, as well as run and debug them.

You can also convert and open the notebook as a Python code file through the Jupyter: Export to Python Script command. The notebook’s cells are delimited in the Python file with

#%%

comments, and the Jupyter extension shows Run Cell or Run Below CodeLens. Selecting either CodeLens starts the Jupyter server and runs the cell(s) in the Python interactive window:

You can also connect to a remote Jupyter server to run your notebooks. For more information, see Jupyter support.

Install Python and the Python extension

The tutorial guides you through installing Python and using the extension. You must install a Python interpreter yourself separately from the extension. For a quick install, use Python from python.org and install the extension from the VS Code Marketplace.

Note: To help get you started with Python development, you can use the Python profile template that includes useful extensions, settings, and Python code snippets.

Once you have a version of Python installed, select it using the Python: Select Interpreter command. If VS Code doesn’t automatically locate the interpreter you’re looking for, refer to Environments – Manually specify an interpreter.

You can configure the Python extension through settings. Learn more in the Python Settings reference.

Windows Subsystem for Linux: If you are on Windows, WSL is a great way to do Python development. You can run Linux distributions on Windows and Python is often already installed. When coupled with the WSL extension, you get full VS Code editing and debugging support while running in the context of WSL. To learn more, go to Developing in WSL or try the Working in WSL tutorial.

How To Setup A Virtual Environment For Python In Visual Studio Code In 2023
How To Setup A Virtual Environment For Python In Visual Studio Code In 2023

Test your install

Quickly check your installation of Python support:

  1. Launch Visual Studio.

  2. Select Alt + I to open the Python Interactive window.

  3. In the window, enter the statement


    2+2

    .

    The statement output

    displays in the window. If you don’t see the correct output, recheck your steps.

Install Python Extension

To make the VS Code work with Python, you need to install the Python extension from the Visual Studio Marketplace.

The following picture illustrates the steps:

  • First, click the Extensions tab.
  • Second, type the

    python

    keyword on the search input.
  • Third, click the

    Python

    extension. It’ll show detailed information on the right pane.
  • Finally, click the Install button to install the Python extension.

Now, you’re ready to develop the first program in Python.

How to install Python Libraries in Visual Studio Code
How to install Python Libraries in Visual Studio Code

Debugging and Testing in VSCode

Debugging

The Python extension comes with Debugging for all kinds of applications like multi-threaded, web, and remote applications. We can set breakpoints, inspect data, and run programs step by step.

Select a debug configuration

Launch the debug tab by clicking on the debug icon on the action bar or by using the keyboard shortcut Ctrl + Shift +D. To customize Debug options, click on create a launch.json file and select Python File.

Debug Panel

Run the Debug by clicking on the blue button Run and Debug, and it will run the Python file and show us the Variables, Watch, Call Stack, and breakpoints.

Quick debug

For quick debugging, you can always click on the down arrow beside the Run button and select Debug Python File.

Testing

The Python extension supports unittest and pytest testing frameworks. Instead of reading the test results in a terminal, you can review and resolve the issues within the Testing tab in an active bar.

Configure Python tests

After clicking on the Testing button, we will click on the Configure Python Tests button and select the testing framework. Usually, VSCode automatically detects the framework and displays all the tests in a tree view.

Learn about Python unit testing, implementing Python’s pytest testing framework by following our how to use pytest for unit testing tutorial.

Note: The testing example that we are using is from Visual Studio Code official documentation.

Run the unittest

We can run the Unit test by clicking on the Run Test button in the Testing tab and analyzing the results.

As we can observe, 1 of 2 tests have passed, and it has displayed the reasoning behind the failed result. VSCode testing is highly interactive and user-friendly.

Python and Visual Studio Code Setup

In this part, we will learn to install Python and VSCode and run a simple Python code.

Installing Python

Downloading and installing the latest version of Python is straightforward. Go to Python.org and download the latest version for Windows. The installer is also available for Linux/Unix, macOS, and other platforms. After downloading the installer, install Python with default settings.

Image from Python.org

The most popular way of installing Python is through Anaconda Distribution. It comes with a pre-installed package and software for us to start coding without hiccups. It is available for Windows, macOS, and Linux operating systems.

Image from Anaconda

After installing Python on our operating system, check whether it is properly working by typing the following command in CLI / Terminal.


python --version

Output:


Python 3.9.13

Other Python installation methods

We can also install Python using various CLI tools or through the Windows store.

You can check out our full guide on how to install Python for more details. Similarly, our interactive Introduction to Python course helps you master the basics of Python syntax, lists, functions, packages, and Numpy.

Installing VSCode

Installing VSCode is super simple. Download and install the stable build from the official website. The installer is available for all kinds of operating systems, including web browsers.

Image from Visual Studio Code

Other VSCode installation methods

We can install using Microsoft store, Snap Store, and multiple CLI tools for Windows, Linux, and macOS.

Running Python in VSCode

After installing Python and VSCode, it is time to write a simple code and run the Python file within the IDE.

Create a new file

At start, you will see the welcome note. Ignore that and go to File > New Text File or use the keyboard shortcut Ctrl + N to create a new file. After that, write a simple print expression to display “Hello World.”

Save Python file

Save the file using Ctrl + S. Select the file directory and type the file name. Make sure to add `.py` at the end of the file name.

Select the interpreter

To run the Python file, we need to select the Python interpreter. By default, the Anaconda environment comes with Python version 3.9.13.

Run a Python file

To run the Python file, simply click on the Run button on the top left, as shown in the image. It will initialize the terminal and run the Python file to display the output.

You can also type python test.py in the terminal to run the file present in the current directory.

How to run Python in Visual Studio Code on Windows 10/11 [ 2024 Update ] Python Developers
How to run Python in Visual Studio Code on Windows 10/11 [ 2024 Update ] Python Developers

Tips and Tricks for Efficient Python Development in VSCode

VSCode comes with awesome Python development features and extensions. We can customize them to our needs and improve the productivity. In this section, we will learn about tips and tricks for efficient Python development.

  1. Getting started: Help > Get Started. Learn about VSCode’s customization and features by following guided tutorials.
  2. Command Palette: access entire all available commands by using the Keyboard shortcut: Ctrl+Shift+P. By writing keywords, we can access specific commands.
  3. Keyboard shortcuts: better than command palettes. We can modify keyboard shortcuts or memorize them by using keyboard reference sheets. It will help us access the commands directly, instead of searching with the keyword.
  4. Command line: launch the VSCode editor through the command line interface by typing `code .`. We can also customize how the editor is launched by adding additional arguments.
  5. Errors and warnings: quick jump to errors and warnings in a project by using the keyboard shortcut: Ctrl+Shift+M. We can also cycle through the error with F8 or Shift+F8.
  6. Customization: VSCode allows us to customize themes, keyboard shortcuts, JSON validation, debugging settings, fonts, and many more. It is a fully customizable IDE.
  7. Extensions: other Python extensions improve our development experience. Look for popular extensions on the Visual Studio Marketplace.
  8. Multi cursor selection: is a lifesaver. Add cursors at arbitrary positions by using Alt+Click. It will allow us to modify multiple lines of code at once. We can also use Ctrl+Shift+L to modify all occurrences of the current selection.
  9. Search and modify: this is the best tool for searching and modifying multiple expressions at once. We can also rename the symbol by selecting the symbol and typing F2.
  10. Git integration: allows us to perform all Git-related tasks within IDE. It provides an easy-to-use GUI for diff, views, staging, branching, committing, merging, and more.
  11. Code Snippets: is our best friend. Just like Autohotkey, we are creating templates for repeating code patterns. To create a custom code snippet, select File > Preferences > Configure User Snippets and then select the language.
  12. GitHub Copilot: is a winner extension for all kinds of development. It enhances the coding experience with artificial intelligence (AI) by suggesting lines of code or entire functions.

Bonus: sync your settings by logging into your GitHub account. It will sync your settings across all of the machines.

Run Python code

To experience Python, create a file (using the File Explorer) named

hello.py

and paste in the following code:


print("Hello World")

The Python extension then provides shortcuts to run Python code using the currently selected interpreter (Python: Select Interpreter in the Command Palette). To run the active Python file, click the Run Python File in Terminal play button in the top-right side of the editor.

You can also run individual lines or a selection of code with the Python: Run Selection/Line in Python Terminal command (Shift+Enter). If there isn’t a selection, the line with your cursor will be run in the Python Terminal. An identical Run Selection/Line in Python Terminal command is available on the context menu for a selection in the editor. The same terminal will be used every time you run a selection or a line in the terminal/REPL, until that terminal is closed. The same terminal is also used for Run Python File in Terminal. If that terminal is still running the REPL, you should exit the REPL (

exit()

) or switch to a different terminal before running a Python file.

The Python extension automatically removes indents based on the first non-empty line of the selection, shifting all other lines left as needed.

The command opens the Python Terminal if necessary; you can also open the interactive REPL environment directly using the Python: Start REPL command that activates a terminal with the currently selected interpreter and then runs the Python REPL.

For a more specific walkthrough and other ways of running code, see the run code tutorial.

How to Run Python Using Visual Studio Code 2023 | How to install Python in vs code
How to Run Python Using Visual Studio Code 2023 | How to install Python in vs code

Installing Essential VSCode Python Extensions

The VSCode’s Python extensions will provide us with the helping functionalities for code editing, docstrings, linting, formatting, debugging, testing, and environment selection.

How to install a VSCode Extension

Click on the box icon on the activity bar or use a keyboard shortcut: Ctrl + Shift + X to open the extension panel. Type any keyword in the search bar to explore all kinds of extensions.

Install VSCode Python extension

In our case, we will type Python and install the Python extension by clicking on the install button, as shown above.

List of Essential Python Extensions

Python

The Python extension automatically installs Pylance, Jupyter, and isort extensions. It comes with a complete collection of tools for Data Science, web development, and software engineering.

Key Features:

Python extension comes with IntelliSense, linting, debugging, code navigation, code formatting, refactoring, variable explorer, and test explorer.

  • IntelliSense (code autocomplete)
  • Linting (Pylint, Flake8)
  • Code formatting (black, autopep)
  • Debugging
  • Testing (unittest, pytest)
  • Jupyter Notebooks
  • Environments (venv, pipenv, conda)
  • Refactoring
Indent-rainbow

Indent-rainbow extensions provide us with a multilevel colorized indentation for improved code readability. We get alternating colors on each step, and it helps us avoid common indentation errors.

Python Indent

Python Indent extension helps us with creating indentations. By pressing the Enter key, the extension will parse the Python file and determine how the next line should be indented. It is a time saver.

Jupyter Notebook Renderers

Jupyter Notebook Renderers is part of the Jupyter extension pack. It helps us render plotly, vega, gif, png, svg, and jpeg output.

autoDocstring

The autoDocstring extension helps us quickly generate docstring for Python functions. By typing triple quotes “”” or ”’ within the function, we can generate and modify docstring. Learn more about doc strings by following our Python Docstrings tutorial.

Note: Most Python development extensions and features come with Python extensions.

Why use VSCode for Python?

Virtual Studio Code (VSCode) is a perfect Integrated Development Environment for Python. It is simple and comes with built-in features that enhance the development experience. VSCode Python extensions come with powerful features like syntax autocomplete, linting, debugging, unit testing, GitOps, virtual environments, notebooks, editing tools, and the ability to customize the editor.

Key Features:

  1. Command Palette to access all commands by typing keywords.
  2. Fully customizable keyboard shortcuts.
  3. Jupyter extension for data science. Run Jupyter notebook within the IDE.
  4. Auto linting and formatting.
  5. Debugging and Testing.
  6. Git integration.
  7. Custom code snippets.
  8. Enhanced editing tools. Multi cursor selection, column selection, outline view, side-by-side preview, and search and modify.

In this tutorial, we will start by installing Python and VSCode, then run a Python script in VSCode. After that, we will customize the editor to enhance the Python development experience by installing essential extensions and learning about built-in features. In the end, we will learn about Python productivity hacks.

How to Run Python 3.12 in Visual Studio Code on Windows 10 [2023]| Run Sample Python Program
How to Run Python 3.12 in Visual Studio Code on Windows 10 [2023]| Run Sample Python Program

Run Python code

Click the Run Python File in Terminal play button in the top-right side of the editor.

The button opens a terminal panel in which your Python interpreter is automatically activated, then runs

python3 hello.py

(macOS/Linux) or

python hello.py

(Windows):

There are three other ways you can run Python code within VS Code:

  1. Right-click anywhere in the editor window and select Run > Python File in Terminal (which saves the file automatically):

  2. Select one or more lines, then press Shift+Enter or right-click and select Run Selection/Line in Python Terminal. This command is convenient for testing just a part of a file.

  3. From the Command Palette (⇧⌘P (Windows, Linux Ctrl+Shift+P)), select the Python: Start REPL command to open a REPL terminal for the currently selected Python interpreter. In the REPL, you can then enter and run lines of code one at a time.

Congrats, you just ran your first Python code in Visual Studio Code!

Keywords searched by users: install python visual studio

Setting Up Vscode For Python: A Complete Guide | Datacamp
Setting Up Vscode For Python: A Complete Guide | Datacamp
Visual Studio Python Ide - Python Development Tools For Windows
Visual Studio Python Ide – Python Development Tools For Windows
Setting Up Vscode For Python: A Complete Guide | Datacamp
Setting Up Vscode For Python: A Complete Guide | Datacamp
Python In Visual Studio Tutorial Step 5, Install Packages | Microsoft Learn
Python In Visual Studio Tutorial Step 5, Install Packages | Microsoft Learn
Setup Visual Studio Code For Python - A Step-By-Step Guide
Setup Visual Studio Code For Python – A Step-By-Step Guide
Python Development In Visual Studio Code – Real Python
Python Development In Visual Studio Code – Real Python
How To Install Python With Visual Studio Code As Ide - Easy Step By Step  Guide | Pro Code Guide
How To Install Python With Visual Studio Code As Ide – Easy Step By Step Guide | Pro Code Guide
Python Support Is Now Stable In Visual Studio 2017 - Python
Python Support Is Now Stable In Visual Studio 2017 – Python
Csci 343 - Quick Notes - Installing Pil For Visual Studio Code - Youtube
Csci 343 – Quick Notes – Installing Pil For Visual Studio Code – Youtube
How To Set Up Visual Studio Code For Python Development
How To Set Up Visual Studio Code For Python Development
Python - Visual Studio Marketplace
Python – Visual Studio Marketplace
Python Development In Visual Studio Code – Real Python
Python Development In Visual Studio Code – Real Python
How To Set Up Visual Studio Code In 2023 (The Easy Way)
How To Set Up Visual Studio Code In 2023 (The Easy Way)
How To Set Up Python On Visual Studio Code - Youtube
How To Set Up Python On Visual Studio Code – Youtube
How To Install Python'S Numpy Library In Visual Studio Code - Quora
How To Install Python’S Numpy Library In Visual Studio Code – Quora
Python In Visual Studio Tutorial Step 1, Create A Project | Microsoft Learn
Python In Visual Studio Tutorial Step 1, Create A Project | Microsoft Learn
Setting Up Vscode For Python: A Complete Guide | Datacamp
Setting Up Vscode For Python: A Complete Guide | Datacamp
Python In Visual Studio Tutorial Step 1, Create A Project | Microsoft Learn
Python In Visual Studio Tutorial Step 1, Create A Project | Microsoft Learn
Installing Python Libraries In Visual Studio Code — Eightify
Installing Python Libraries In Visual Studio Code — Eightify
Python In Visual Studio Tutorial Step 5, Install Packages | Microsoft Learn
Python In Visual Studio Tutorial Step 5, Install Packages | Microsoft Learn
Pip And Python In Visual Studio Code • Codewrecks
Pip And Python In Visual Studio Code • Codewrecks
Python In Visual Studio Tutorial Step 5, Install Packages | Microsoft Learn
Python In Visual Studio Tutorial Step 5, Install Packages | Microsoft Learn
Python Development In Visual Studio Code – Real Python
Python Development In Visual Studio Code – Real Python
Visual Studio Python Ide - Python Development Tools For Windows
Visual Studio Python Ide – Python Development Tools For Windows
How To Install Python Visual Studio!!! - Youtube
How To Install Python Visual Studio!!! – Youtube
Python In Visual Studio Tutorial Step 5, Install Packages | Microsoft Learn
Python In Visual Studio Tutorial Step 5, Install Packages | Microsoft Learn

See more here: kientrucannam.vn

Leave a Reply

Your email address will not be published. Required fields are marked *